Electronic basis of visible region activity in high area Sn-doped rutile TiO2 photocatalysts

Phys Chem Chem Phys. 2011 May 7;13(17):7882-91. doi: 10.1039/c0cp02639e. Epub 2011 Mar 28.

Abstract

The influence of Sn doping on the anatase-to-rutile phase transition has been investigated in high area powders prepared by a sol-gel route involving alkoxide precursors. Sn doping facilitates conversion of anatase to rutile at lower temperatures than observed for undoped material. At the same time Sn-doping inhibits sintering as gauged by line widths in X-ray diffraction and gas-adsorption surface area measurements. These observations are linked to the finding of pronounced segregation of Sn to the surface of rutile TiO(2) observed in X-ray photoemission spectra. Sn-doped TiO(2) is found to exhibit enhanced visible region photocatalytic activity as compared with undoped material in dye degradation experiments. This is attributed to narrowing of the bulk bandgap at low doping levels coupled with the introduction of surface states associated with segregated Sn ions in the divalent state. The Sn(II) surface states lie above the top of the main valence band and can therefore act as trapping sites for holes produced under photoexcitation.