Biomechanical research in dance: a literature review

Med Probl Perform Art. 2011 Mar;26(1):3-23.

Abstract

The authors reviewed the literature, published from 1970 through December 2009, on biomechanical research in dance. To identify articles, the authors used search engines, including PubMed and Web of Science, five previous review articles, the Dance Medicine and Science Bibliography, and reference lists of theses, dissertations, and articles being reviewed. Any dance research articles (English language) involving the use of electromyography, forceplates, motion analysis using photography, cinematography or videography, and/or physics analysis were included. A total of 89 papers, theses/dissertations, and abstracts were identified and reviewed, grouped by the movement concept or specialized movements being studied: alignment (n = 8), plié (8), relevé (8), passé (3), degagé (3), développé (7), rond de jambe (3), grand battement (4), arm movements (1), forward stepping (3), turns (6), elevation work (28), falls (1), and dance-specific motor strategies (6). Several recurring themes emerged from these studies: that elite dancers demonstrate different and superior motor strategies than novices or nondancers; that dancers perform differently when using a barre as opposed to without a barre, both in terms of muscle activation patterns and weight shift strategies; that while skilled dancers tend to be more consistent across multiple trials of a task, considerable variability is seen among participants, even when matched for background, years of training, body type, and other variables; and that dance teachers recommend methods of achieving movement skills that are inconsistent with optimal biomechanical function, as well as inconsistent with strategies employed by elite dancers. Measurement tools and the efficacy of study methodologies are also discussed.

Publication types

  • Review

MeSH terms

  • Ankle Joint / physiology*
  • Biomechanical Phenomena
  • Dancing / classification
  • Dancing / physiology*
  • Evidence-Based Medicine
  • Functional Laterality / physiology*
  • Humans
  • Movement / physiology*
  • Proprioception / physiology*
  • Research Design
  • Stress, Mechanical
  • Task Performance and Analysis