Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas

Plant Sci. 2011 Apr;180(4):642-9. doi: 10.1016/j.plantsci.2011.01.007. Epub 2011 Jan 20.

Abstract

Acetyl-CoA carboxylase (ACCase) catalyzes the biotin-dependent carboxylation of acetyl-CoA to produce malonyl-CoA, which is the essential first step in the biosynthesis of long-chain fatty acids. ACCase exists as a multi-subunit enzyme in most prokaryotes and the chloroplasts of most plants and algae, while it is present as a multi-domain enzyme in the endoplasmic reticulum of most eukaryotes. The heteromeric ACCase of higher plants consists of four subunits: an α-subunit of carboxyltransferase (α-CT, encoded by accA gene), a biotin carboxyl carrier protein (BCCP, encoded by accB gene), a biotin carboxylase (BC, encoded by accC gene) and a β-subunit of carboxyltransferase (β-CT, encoded by accD gene). In this study, we cloned and characterized the genes accA, accB1, accC and accD that encode the subunits of heteromeric ACCase in Jatropha (Jatropha curcas), a potential biofuel plant. The full-length cDNAs of the four subunit genes were isolated from a Jatropha cDNA library and by using 5' RACE, whereas the genomic clones were obtained from a Jatropha BAC library. They encode a 771 amino acid (aa) α-CT, a 286-aa BCCP1, a 537-aa BC and a 494-aa β-CT, respectively. The single-copy accA, accB1 and accC genes are nuclear genes, while the accD gene is located in chloroplast genome. Jatropha α-CT, BCCP1, BC and β-CT show high identity to their homologues in other higher plants at amino acid level and contain all conserved domains for ACCase activity. The accA, accB1, accC and accD genes are temporally and spatially expressed in the leaves and endosperm of Jatropha plants, which are regulated by plant development and environmental factors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetyl-CoA Carboxylase / genetics*
  • Acetyl-CoA Carboxylase / metabolism
  • Cloning, Molecular
  • DNA, Complementary / chemistry
  • Jatropha / enzymology
  • Jatropha / genetics*
  • Phylogeny
  • Plant Proteins / genetics*
  • Plant Proteins / metabolism
  • Sequence Analysis, DNA

Substances

  • DNA, Complementary
  • Plant Proteins
  • Acetyl-CoA Carboxylase