In situ nanomechanics of GaN nanowires

Nano Lett. 2011 Apr 13;11(4):1618-22. doi: 10.1021/nl200002x. Epub 2011 Mar 18.

Abstract

The deformation, fracture mechanisms, and the fracture strength of individual GaN nanowires were measured in real time using a transmission electron microscope-scanning probe microscope (TEM-SPM) platform. Surface mediated plasticity, such as dislocation nucleation from a free surface and plastic deformation between the SPM probe (the punch) and the nanowire contact surface were observed in situ. Although local plasticity was observed frequently, global plasticity was not observed, indicating the overall brittle nature of this material. Dislocation nucleation and propagation is a precursor before the fracture event, but the fracture surface shows brittle characteristic. The fracture surface is not straight but kinked at (10-10) or (10-11) planes. Dislocations are generated at a stress near the fracture strength of the nanowire, which ranges from 0.21 to 1.76 GPa. The results assess the mechanical properties of GaN nanowires and may provide important insight into the design of GaN nanowire devices for electronic and optoelectronic applications.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Elastic Modulus
  • Gallium / chemistry*
  • Macromolecular Substances / chemistry
  • Materials Testing
  • Molecular Conformation
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure*
  • Particle Size
  • Stress, Mechanical
  • Surface Properties
  • Tensile Strength

Substances

  • Macromolecular Substances
  • gallium nitride
  • Gallium