Laser ablation synthesis of new phosphorus nitride clusters from α-P3N5 via Laser Desorption Ionization and Matrix Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry

Rapid Commun Mass Spectrom. 2011 Apr 15;25(7):917-24. doi: 10.1002/rcm.4937. Epub 2011 Mar 14.

Abstract

Phosphorus nitride clusters generated during Laser Desorption Ionization (LDI) and Matrix-Assisted Laser Desorption Ionization (MALDI) of solid P(3) N(5) were analyzed via Time-of-Flight Mass Spectrometry (TOF MS). The LDI TOF mass spectra show the formation of series of clusters: P(m)N(n)(+) {(m=1; n=8-11), (m=4; n=3-4), (m=5; n=1-5), (m=6; n=1-3, 5-8), (m=2-7; n=1), (m=5-10; n=2), (m=4-6; n=3), (m=4,5; n=4), (m=5,6; n=5)}, and P(m)N(n)(-) (m=4,5; n=1). Using 3-hydroxypicolinic acid (HPA) as a matrix the P(m)N(n)(+) species (m=1-4, 6, 8) with a high nitrogen content (n=4, 5, 8, 10-12, 20) were identified. The formation of a N(6)(-) cluster was also detected using a C(60) matrix. Under various conditions singly charged P(m)(+) (m=2-7, 9, 13), P(m)(-) (m=3-11, 13, 15, 17), N(n)(+) (n=5, 9, 10, 12, 13), and N(n)(-) (n=6, 10-15) clusters were identified in the mass spectra. Such high nitrogen content clusters (up to N(15)(-)) generated by laser desorption from a solid material are described for the first time. The stoichiometry of the P(m)N(n) clusters was determined via isotopic envelope analysis and computer modelling. The composition of the clusters with respect to the crystalline structure of α-P(3)N(5) is discussed.