The molecular characteristics dominating the solubility of gases in ionic liquids

Chem Soc Rev. 2011 Jul;40(7):3802-23. doi: 10.1039/c0cs00006j. Epub 2011 Mar 17.

Abstract

This critical review provides a critical discussion of the current state of knowledge of the key factors influencing the solubility of gases in ionic liquids (ILs), including sample purity, experimental methodology, "molecular" characteristics of ILs, temperature and pressure. The review starts with a brief introduction to the current developments and the existing problems in the studies of the gas solubility in ILs. Then, the experimental, computational and theoretical developments in conformational equilibria of ions, in nanosegregated polar and nonpolar domains in ILs, and in the mechanisms for dissolution of gases in ILs are discussed and subsequently collaborated together with our freeze-fracture transmission electron microscopic and Raman measurements to propose the new microscopic mechanism for dissolving the gases in ILs. Next, a critical and quantitative analysis of the influences of the sample purity and the experimental methodology on the gas solubility is made so that the "real" relationships between structure and solubility property can be revealed. In addition, a systematic and deeper understanding of how the "molecular" features of the ILs, the temperature, and the pressure influence the gas solubility is provided at the molecular level. In the section of concluding remarks, the comments are made on the molecular criteria for the future design of the ILs to enhance the gas solubility by specifically optimizing the molecular characteristics of the ILs (265 references).