Active coherent beam combining of diode lasers

Opt Lett. 2011 Mar 15;36(6):999-1001. doi: 10.1364/OL.36.000999.

Abstract

We have demonstrated active coherent beam combination (CBC) of up to 218 semiconductor amplifiers with 38.5 W cw output using up to eleven one-dimensional 21-element individually addressable diode amplifier arrays operating at 960 nm. The amplifier array elements are slab-coupled-optical-waveguide semiconductor amplifiers (SCOWAs) set up in a master-oscillator-power-amplifier configuration. Diffractive optical elements divide the master-oscillator beam to seed multiple arrays of SCOWAs. A SCOWA was phase actuated by adjusting the drive current to each element and controlled using a stochastic-parallel-gradient-descent (SPGD) algorithm for the active CBC. The SPGD is a hill-climbing algorithm that maximizes on-axis intensity in the far field, providing phase locking without needing a reference beam.