Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides

Opt Lett. 2011 Mar 15;36(6):882-4. doi: 10.1364/OL.36.000882.

Abstract

We design and fabricate a 320 nm slot for an electro-optic (E-O) polymer infiltrated silicon photonic crystal waveguide. Because of the large slot width, the poling efficiency of the infiltrated E-O polymer (AJCKL1/amorphous polycarbonate) is significantly improved. When coupled with the slow light effect from the silicon photonic crystal waveguide, an effective in-device r(33) of 735 pm/V, which to our knowledge is a record high, is demonstrated, which is ten times higher than the E-O coefficient achieved in thin film material. Because of this ultrahigh E-O efficiency, the V(π)L of the device is only 0.44 V mm, which is to our knowledge the best result of all E-O polymer modulators.