Improved bio-implant using ultrafast laser induced self-assembled nanotexture in titanium

J Biomed Mater Res B Appl Biomater. 2011 May;97(2):299-305. doi: 10.1002/jbm.b.31815. Epub 2011 Mar 10.

Abstract

The most successful metal implant materials currently have relatively smooth surfaces on the micron size scale, with most failures occurring after only 10 years. To move beyond this limiting time scale, texturing methods have been developed to modify the metal surface to enhance integration of the implant directly with surrounding bone. A flexible single-step ultrafast-laser texturing process has been developed that results in a surface texture that exhibits micron scale peaks and troughs with superimposed submicron and nano-scale features. The textured titanium samples remain completely hydrophilic with no measurable contact angle even after several weeks in normal atmosphere. An increase in mesenchymal stem cell number is observed over that on an untreated control titanium surface. Extensive formation of cellular bridges by stromal cells between pillars shows the favorable response of differentiated cells to the surface and the promotion of their attachment. Expression of the alkaline phosphatase and osteocalcin genes in human bone marrow cells were seen to increase on the textured surface. The development of this single-step method for creating micron, submicron, and nano-scale surface texture directly on metals makes a significant contribution to the goal of improving the integration and life span of joint replacement implants.

Publication types

  • Evaluation Study
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biocompatible Materials / chemistry*
  • Biocompatible Materials / metabolism*
  • Cells, Cultured
  • Humans
  • Lasers*
  • Materials Testing
  • Mesenchymal Stem Cells / cytology
  • Mesenchymal Stem Cells / physiology
  • Microscopy, Electron, Scanning
  • Nanostructures*
  • Prostheses and Implants*
  • Rabbits
  • Stromal Cells / cytology
  • Stromal Cells / physiology
  • Surface Properties
  • Titanium / chemistry*
  • Titanium / metabolism*

Substances

  • Biocompatible Materials
  • Titanium