Peculiarities of the band structure of multi-component photonic crystals with different dimensions

J Phys Condens Matter. 2010 Mar 24;22(11):115401. doi: 10.1088/0953-8984/22/11/115401. Epub 2010 Feb 23.

Abstract

In this work we offer a simple analytical method which allows us to determine and study the effects of the selective switching of photonic stop-bands in multi-component photonic crystals (Mc-PhCs) of any dimensionality. The calculations for Mc-PhCs with low dielectric contrast have been performed in the framework of the model based on the scattering form factor analysis. It has been shown that the effects of selective switching of photonic stop-bands predicted theoretically and found experimentally before in three-dimensional (3D) Mc-PhC have a general character and may be observed also in one-dimensional (1D) and two-dimensional (2D) Mc-PhCs. It is found that 1D, 2D and 3D Mc-PhCs demonstrate unexpectedly similar quasi-periodic behaviour of photonic stop-bands as a function of the reciprocal lattice vector. A proper choice of the structural and dielectric parameters can create a resonance photonic stop-band determining the Bragg wavelengths, to which a photonic crystal can never be transparent.