Embryonic development of the insect central complex: insights from lineages in the grasshopper and Drosophila

Arthropod Struct Dev. 2011 Jul;40(4):334-48. doi: 10.1016/j.asd.2011.02.005. Epub 2011 Mar 5.

Abstract

The neurons of the insect brain derive from neuroblasts which delaminate from the neuroectoderm at stereotypic locations during early embryogenesis. In both grasshopper and Drosophila, each developing neuroblast acquires an intrinsic capacity for neuronal proliferation in a cell autonomous manner and generates a specific lineage of neural progeny which is nearly invariant and unique. Maps revealing numbers and distributions of brain neuroblasts now exist for various species, and in both grasshopper and Drosophila four putatively homologous neuroblasts have been identified whose progeny direct axons to the protocerebral bridge and then to the central body via an equivalent set of tracts. Lineage analysis in the grasshopper nervous system reveals that the progeny of a neuroblast maintain their topological position within the lineage throughout embryogenesis. We have taken advantage of this to study the pioneering of the so-called w, x, y, z tracts, to show how fascicle switching generates central body neuroarchitecture, and to evaluate the roles of so-called intermediate progenitors as well as programmed cell death in shaping lineage structure. The novel form of neurogenesis involving intermediate progenitors has been demonstrated in grasshopper, Drosophila and mammalian cortical development and may represent a general strategy for increasing brain size and complexity. An analysis of gap junctional communication involving serotonergic cells reveals an intrinsic cellular organization which may relate to the presence of such transient progenitors in central complex lineages.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Drosophila / anatomy & histology*
  • Drosophila / embryology*
  • Embryo, Nonmammalian / anatomy & histology
  • Embryo, Nonmammalian / embryology
  • Grasshoppers / anatomy & histology*
  • Grasshoppers / embryology*