Low-dose radiation exposure and atherosclerosis in ApoE⁻/⁻ mice

Radiat Res. 2011 May;175(5):665-76. doi: 10.1667/RR2176.1. Epub 2011 Mar 4.

Abstract

The hypothesis that single low-dose exposures (0.025-0.5 Gy) to low-LET radiation given at either high (about 150 mGy/min) or low (1 mGy/min) dose rate would promote aortic atherosclerosis was tested in female C57BL/6J mice genetically predisposed to this disease (ApoE⁻/⁻). Mice were exposed either at an early stage of disease (2 months of age) and examined 3 or 6 months later or at a late stage of disease (8 months of age) and examined 2 or 4 months later. Changes in aortic lesion frequency, size and severity as well as total serum cholesterol levels and the uptake of lesion lipids by lesion-associated macrophages were assessed. Statistically significant changes in each of these measures were observed, depending on dose, dose rate and disease stage. In all cases, the results were distinctly non-linear with dose, with maximum effects tending to occur at 25 or 50 mGy. In general, low doses given at low dose rate during either early- or late-stage disease were protective, slowing the progression of the disease by one or more of these measures. Most effects appeared and persisted for months after the single exposures, but some were ultimately transitory. In contrast to exposure at low dose rate, high-dose-rate exposure during early-stage disease produced both protective and detrimental effects, suggesting that low doses may influence this disease by more than one mechanism and that dose rate is an important parameter. These results contrast with the known, generally detrimental effects of high doses on the progression of this disease in the same mice and in humans, suggesting that a linear extrapolation of the known increased risk from high doses to low doses is not appropriate.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apolipoproteins E / deficiency*
  • Atherosclerosis / blood
  • Atherosclerosis / etiology*
  • Atherosclerosis / metabolism*
  • Atherosclerosis / pathology
  • Cholesterol / blood
  • Dose-Response Relationship, Radiation
  • Female
  • Lipid Metabolism / radiation effects
  • Macrophages / metabolism
  • Macrophages / radiation effects
  • Mice
  • Time Factors

Substances

  • Apolipoproteins E
  • Cholesterol