Quantum-chemical calculations and IR spectra of the (F2)MF2 molecules (M = B, Al, Ga, In, Tl) in solid matrices: a new class of very high electron affinity neutral molecules

J Am Chem Soc. 2011 Mar 23;133(11):3768-71. doi: 10.1021/ja1110442. Epub 2011 Feb 25.

Abstract

Electron-deficient group 13 metals react with F(2) to give the compounds MF(2) (M = B, Al, Ga, In, Tl), which combine with F(2) to form a new class of very high electron affinity neutral molecules, (F(2))MF(2), in solid argon and neon. These (F(2))MF(2) fluorine metal difluoride molecules were identified through matrix IR spectra containing new antisymmetric and symmetric M-F stretching modes. The assignments were confirmed through close comparisons with frequency calculations using DFT methods, which were calibrated against the MF(3) molecules observed in all of the spectra. Electron affinities calculated at the CCSD(T) level fall between 7.0 and 7.8 eV, which are in the range of the highest known electron affinities.