Hygiene-related and feed-related hoof diseases show different patterns of genetic correlations to clinical mastitis and female fertility

J Dairy Sci. 2011 Mar;94(3):1540-51. doi: 10.3168/jds.2010-3137.

Abstract

Hoof diseases are a problem in many dairy herds. To study one aspect of the problem, genetic correlations between 4 hoof diseases, protein yield, clinical mastitis, number of inseminations, and days from calving to first insemination were estimated in first-parity Swedish Red cows using trivariate linear animal models. Occurrence of dermatitis, heel horn erosion, sole hemorrhage, and sole ulcer were reported by hoof trimmers. The data set contained about 314,000 animals with records on at least one of the traits; among these, about 64,000 animals had records on hoof diseases. Heritabilities were low for all hoof diseases (0.03 to 0.05). The hoof diseases fell into 2 groups: (1) dermatitis and heel horn erosion (i.e., diseases related to hygiene) and (2) sole hemorrhage and sole ulcer (i.e., diseases related to feeding). The genetic correlations between traits within the 2 groups were high (0.87 and 0.73, respectively), whereas the genetic correlations between traits in different groups were low (≤0.23). These results indicate that the 2 groups of hoof diseases are partly influenced by the same genes. All genetic correlations between hoof diseases and protein yield were low to moderate and unfavorable. Moderate and favorable genetic correlations were found between the feed-related hoof diseases and clinical mastitis (0.35 and 0.32), whereas the genetic correlations between the hygiene-related hoof diseases and clinical mastitis were low and not significantly different from zero. The genetic correlations between the hygiene-related hoof diseases and number of inseminations were low to moderate and favorable (0.32 and 0.22), and the genetic correlations between the feed-related hoof diseases and number of inseminations were low and not significantly different from zero. A moderate genetic correlation was found between sole ulcer and days from calving to first insemination (0.33), whereas the genetic correlations between days from calving to first insemination and sole hemorrhage and the hygiene-related hoof diseases were low and not significantly different from zero. In general, the 2 groups of hoof diseases showed different patterns of genetic correlations to the other functional traits, but both were unfavorably correlated to protein yield. A simulation study showed that inclusion of hoof diseases in the selection index will not only reduce the genetic decline in resistance to hoof diseases but also be favorable for other functional traits and improve overall genetic merit.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animal Feed
  • Animals
  • Cattle / genetics*
  • Cattle Diseases / genetics*
  • Female
  • Fertility / genetics*
  • Foot Diseases / genetics
  • Foot Diseases / veterinary*
  • Hoof and Claw*
  • Hygiene
  • Lactation / genetics
  • Mastitis, Bovine / genetics
  • Milk Proteins / analysis

Substances

  • Milk Proteins