SAR monitoring of evolving compound data sets using activity landscapes

J Chem Inf Model. 2011 Mar 28;51(3):532-40. doi: 10.1021/ci100505m. Epub 2011 Feb 15.

Abstract

In pharmaceutical research, collections of active compounds directed against specific therapeutic targets usually evolve over time. Small molecule discovery is an iterative process. New compounds are discovered, alternative compound series explored, some series discontinued, and others prioritized. The design of new compounds usually takes into consideration prior chemical and structure-activity relationship (SAR) knowledge. Hence, historically grown compound collections represent a viable source of chemical and SAR information that might be utilized to retrospectively analyze roadblocks in compound optimization and further guide discovery projects. However, SAR analysis of large and heterogeneous sets of active compounds is also principally complicated. We have subjected evolving compound data sets to SAR monitoring using activity landscape models in order to evaluate how composition and SAR characteristics might change over time. Chemotype and potency distributions in evolving data sets directed against different therapeutic targets were analyzed and alternative activity landscape representations generated at different points in time to monitor the progression of global and local SAR features. Our results show that the evolving data sets studied here have predominantly grown around seed clusters of active compounds that often emerged early on, while other SAR islands remained largely unexplored. Moreover, increasing scaffold diversity in evolving data sets did not necessarily yield new SAR patterns, indicating a rather significant influence of "me-too-ism" (i.e., introducing new chemotypes that are similar to already known ones) on the composition and SAR information content of the data sets.

MeSH terms

  • Drug Discovery*
  • Models, Molecular
  • Small Molecule Libraries
  • Structure-Activity Relationship

Substances

  • Small Molecule Libraries