Biomaterials coated by dental pulp cells as substrate for neural stem cell differentiation

J Biomed Mater Res A. 2011 Apr;97(1):85-92. doi: 10.1002/jbm.a.33032. Epub 2011 Feb 11.

Abstract

This study is focused on the development of an in vitro hybrid system, consisting in a polymeric biomaterial covered by a dental pulp cellular stroma that acts as a scaffold offering a neurotrophic support for the subsequent survival and differentiation of neural stem cells. In the first place, the behavior of dental pulp stroma on the polymeric biomaterial based on ethyl acrylate and hydroxy ethyl acrylate copolymer was studied. For this purpose, cells from normal human third molars were grown onto 0.5-mm-diameter biomaterial discs. After cell culture, quantification of neurotrophic factors generated by the stromal cells was performed by means of an ELISA assay. In the second place, survival and differentiation of adult murine neural stem cells on the polymeric biomaterials covered by dental pulp stromal cells was studied. The results show the capacity of dental pulp cells to uniformly coat the majority of the material's surface and to secrete neurotrophic factors that become crucial for a subsequent differentiation of neural stem cells. The use of stromal cells cultured on scaffolding biomaterials provides neurotrophic pumps that may suggest new criteria for the design of cell therapy experiments in animal models to assist the repair of lesions in Central Nervous System.

Keywords: cell adhesion; cell culture; nerve growth factor; neural cell; stem cell.

MeSH terms

  • Animals
  • Brain-Derived Neurotrophic Factor / metabolism
  • Cell Adhesion / drug effects
  • Cell Differentiation / drug effects*
  • Cell Proliferation / drug effects
  • Cells, Cultured
  • Coated Materials, Biocompatible / pharmacology*
  • Dental Pulp / cytology*
  • Dental Pulp / drug effects
  • Dental Pulp / metabolism
  • Dental Pulp / ultrastructure
  • Humans
  • Mice
  • Nerve Growth Factor / metabolism
  • Neural Stem Cells / cytology*
  • Neural Stem Cells / drug effects
  • Neural Stem Cells / metabolism
  • Neurons / cytology
  • Neurons / drug effects
  • Rats

Substances

  • Brain-Derived Neurotrophic Factor
  • Coated Materials, Biocompatible
  • Nerve Growth Factor