Pharmacological relevance and potential of sphingosine 1-phosphate in the vascular system

Br J Pharmacol. 2011 Jul;163(6):1140-62. doi: 10.1111/j.1476-5381.2011.01260.x.

Abstract

Sphingosine-1-phosphate (S1P) was identified as a crucial molecule for regulating immune responses, inflammatory processes as well as influencing the cardiovascular system. S1P mediates differentiation, proliferation and migration during vascular development and homoeostasis. S1P is a naturally occurring lipid metabolite and is present in human blood in nanomolar concentrations. S1P is not only involved in physiological but also in pathophysiological processes. Therefore, this complex signalling system is potentially interesting for pharmacological intervention. Modulation of the system might influence inflammatory, angiogenic or vasoregulatory processes. S1P activates G-protein coupled receptors, namely S1P(1-5) , whereas only S1P(1-3) is present in vascular cells. S1P can also act as an intracellular signalling molecule. This review highlights the pharmacological potential of S1P signalling in the vascular system by giving an overview of S1P-mediated processes in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). After a short summary of S1P metabolism and signalling pathways, the role of S1P in EC and VSMC proliferation and migration, the cause of relaxation and constriction of arterial blood vessels, the protective functions on endothelial apoptosis, as well as the regulatory function in leukocyte adhesion and inflammatory responses are summarized. This is followed by a detailed description of currently known pharmacological agonists and antagonists as new tools for mediating S1P signalling in the vasculature. The variety of effects influenced by S1P provides plenty of therapeutic targets currently under investigation for potential pharmacological intervention.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cardiovascular Physiological Phenomena / drug effects*
  • Humans
  • Lysophospholipids / metabolism*
  • Receptors, Lysosphingolipid / physiology
  • Signal Transduction / physiology*
  • Sphingosine / analogs & derivatives*
  • Sphingosine / metabolism

Substances

  • Lysophospholipids
  • Receptors, Lysosphingolipid
  • sphingosine 1-phosphate
  • Sphingosine