Fast and efficient size-based separations of polymers using ultra-high-pressure liquid chromatography

J Chromatogr A. 2011 Mar 18;1218(11):1509-18. doi: 10.1016/j.chroma.2011.01.053. Epub 2011 Jan 22.

Abstract

Ultra-high-pressure liquid chromatography (UHPLC) has great potential for the separations of both small molecules and polymers. However, the implementation of UHPLC for the analysis of macromolecules invokes several problems. First, to provide information on the molecular-weight distribution of a polymer, size-exclusion (SEC) columns with specific pore sizes are needed. Development of packing materials with large pore diameters and pore volumes which are mechanically stable at ultra-high-pressures is a technological challenge. Additionally, narrow-bore columns are typically used in UHPLC to minimize the problem of heat dissipation. Such columns pose stringent requirements on the extra-column dispersion, especially for large (slowly diffusing) molecules. Finally, UHPLC conditions generate high shear rates, which may affect polymer chains. The possibilities and limitations of UHPLC for size-based separations of polymers are addressed in the present study. We demonstrate the feasibility of conducting efficient and very fast size-based separations of polymers using conventional and wide-bore (4.6 mm I.D.) UHPLC columns. The wider columns allow minimization of the extra-column contribution to the observed peak widths down to an insignificant level. Reliable SEC separations of polymers with molecular weights up to ca. 50 kDa are achieved within less than 1 min at pressures of about 66 MPa. Due to the small particles used in UHPLC it is possible to separate high-molecular-weight polymers (50 kDa ≤ M(r) ≤ 1-3 MDa, upper limit depends on the flow rate) in the hydrodynamic-chromatography (HDC) mode. Very fast and efficient HDC separations are presented. For very large polymer molecules (typically larger than several MDa, depending on the flow rate) two chromatographic peaks are observed. This is attributed to the onset of molecular deformation at high shear rates and the simultaneous actions of hydrodynamic and slalom chromatography.

MeSH terms

  • Chromatography, Gel / methods
  • Chromatography, High Pressure Liquid / methods*
  • Polymers / chemistry
  • Polymers / isolation & purification*
  • Polystyrenes / chemistry
  • Polystyrenes / isolation & purification
  • Reproducibility of Results

Substances

  • Polymers
  • Polystyrenes