Prevention of Pseudomonas aeruginosa adhesion by electric currents

Biofouling. 2011 Feb;27(2):217-24. doi: 10.1080/08927014.2011.554831.

Abstract

The process of controlling bacterial adhesion using an electric current deserves attention because of its ease of automation and environmentally friendly nature. This study investigated the role of electric currents (negative, positive, alternating) for preventing adhesion of Pseudomonas aeruginosa and achieving bacterial inactivation. Indium tin oxide (ITO) film was used as a working electrode to observe adhesion and inactivation under electric polarization. Electric current types were classified into negative, positive, and alternating current. The working electrode acted as a cathode or anode by applying a negative or positive current, and an alternating current indicates that the negative current was combined sequentially with the positive current. The numbers of adhered cells were compared under a flow condition, and the in situ behavior of the bacterial cells and the extent of their inactivation were also investigated using time-lapse recording and live/dead staining, respectively. The application of a negative current prevented bacterial adhesion significantly (∼81% at 15.0 μA cm(-2)). The positive current did not significantly inhibit adhesion (<20% at 15.0 μA cm(-2)), compared to the nonpolarized case. The alternating current had a similar effect as the negative current on preventing bacterial adhesion, but it also exhibited bactericidal effects, making it the most suitable method for bacterial adhesion control.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Adhesion / physiology*
  • Biofilms / growth & development*
  • Electricity*
  • Electrodes
  • Pseudomonas aeruginosa / metabolism
  • Pseudomonas aeruginosa / physiology*
  • Reactive Oxygen Species / metabolism
  • Spectrophotometry, Atomic
  • Spectrophotometry, Ultraviolet

Substances

  • Reactive Oxygen Species