Human dental pulp stem cells produce mineralized matrix in 2D and 3D cultures

Eur J Histochem. 2010 Nov 10;54(4):e46. doi: 10.4081/ejh.2010.e46.

Abstract

The aim of this study was to characterize the in vitro osteogenic differentiation of dental pulp stem cells (DPSCs) in 2D cultures and 3D biomaterials. DPSCs, separated from dental pulp by enzymatic digestion, and isolated by magnetic cell sorting were differentiated toward osteogenic lineage on 2D surface by using an osteogenic medium. During the differentiation process, DPSCs express specific bone proteins like Runx-2, Osx, OPN and OCN with a sequential expression, analogous to those occurring during osteoblast differentiation, and produce extracellular calcium deposits. In order to differentiate cells in a 3D space that mimes the physiological environment, DPSCs were cultured in two distinct bioscaffolds, Matrigel™ and Collagen sponge. With the addition of a third dimension, osteogenic differentiation and mineralized extracellular matrix production significantly improved. In particular, in Matrigel™ DPSCs differentiated with osteoblast/osteocyte characteristics and connected by gap junction, and therefore formed calcified nodules with a 3D intercellular network. Furthermore, DPSCs differentiated in collagen sponge actively secrete human type I collagen micro-fibrils and form calcified matrix containing trabecular-like structures. These neo-formed DPSCs-scaffold devices may be used in regenerative surgical applications in order to resolve pathologies and traumas characterized by critical size bone defects.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Blotting, Western
  • Calcification, Physiologic / physiology*
  • Cell Culture Techniques
  • Cell Differentiation
  • Cells, Cultured
  • Dental Pulp / cytology*
  • Extracellular Matrix / metabolism*
  • Fluorescent Antibody Technique
  • Humans
  • Immunoenzyme Techniques
  • Osteogenesis / physiology*
  • Stem Cells / physiology*
  • Young Adult