Current status of the taxonomic position of Fusarium oxysporum formae specialis cubense within the Fusarium oxysporum complex

Infect Genet Evol. 2011 Apr;11(3):533-42. doi: 10.1016/j.meegid.2011.01.012. Epub 2011 Jan 21.

Abstract

Fusarium oxysporum is an asexual fungal species that includes human and animal pathogens and a diverse range of nonpathogens. Pathogenic and nonpathogenic strains of this species can be distinguished from each other with pathogenicity tests, but not with morphological analysis or sexual compatibility studies. Substantial genetic diversity among isolates has led to the realization that F. oxysporum represents a complex of cryptic species. F. oxysporum f. sp cubense (Foc), causal agent of Fusarium wilt of banana, is one of the more than 150 plant pathogenic forms of F. oxysporum. Multi-gene phylogenetic studies of Foc revealed at least eight phylogenetic lineages, a finding that was supported by random amplified polymorphic DNAs, restriction fragment length polymorphisms and amplified fragment length polymorphisms. Most of these lineages consist of isolates in closely related vegetative compatibility groups, some of which possess opposite mating type alleles, MAT-1 and MAT-2; thus, the evolutionary history of this fungus may have included recent sexual reproduction. The ability to cause disease on all or some of the current race differential cultivars has evolved convergently in the taxon, as members of some races appear in different phylogenetic lineages. Therefore, various factors including co-evolution the plant host and horizontal gene transfer are thought to have shaped the evolutionary history of Foc. This review discusses the evolution of Foc as a model formae specialis in F. oxysporum in relation to recent research findings involving DNA-based studies.

Publication types

  • Review

MeSH terms

  • Amplified Fragment Length Polymorphism Analysis
  • Biological Evolution
  • Fusarium / classification*
  • Fusarium / pathogenicity
  • Fusarium / physiology
  • Magnoliopsida / microbiology*
  • Plant Diseases / microbiology*
  • Polymorphism, Restriction Fragment Length
  • Random Amplified Polymorphic DNA Technique
  • Repetitive Sequences, Nucleic Acid