Highly strained 2,3-bridged 2H-azirines at the borderline of closed-shell molecules

Chemistry. 2011 Jan 24;17(4):1128-36. doi: 10.1002/chem.201002474. Epub 2010 Dec 3.

Abstract

Substituted 1-azidocyclopentenes and 1-azidocyclohexenes were photolyzed to generate 2,3-bridged 2H-azirines. In the case of bridgehead azirines with a six-membered carbocycle, detection by NMR spectroscopic analysis was possible, whereas even kinetically stabilized bridgehead azirines with a five-membered ring could not be characterized by low-temperature NMR spectroscopic analysis. Thus, a recent report on the latter heterocycles was corrected. Depending on the substitution pattern, irradiation of 1-azidocyclopentenes either led to products that can be explained on the basis of short-lived 2,3-bridged 2H-azirines, or gave secondary products generated from triplet nitrenes. The diverse photoreactivity of 2,3-bridged 2H-azirines was also studied by quantum chemical methods (DFT, CCSD(T), CASSCF(6,6)) with respect to the singlet and triplet energy surfaces. The ring-opening processes leading to the corresponding vinyl nitrenes were identified as key steps for the observed reactivity.