FXYD proteins stabilize Na,K-ATPase: amplification of specific phosphatidylserine-protein interactions

J Biol Chem. 2011 Mar 18;286(11):9699-712. doi: 10.1074/jbc.M110.184234. Epub 2011 Jan 12.

Abstract

FXYD proteins are a family of seven small regulatory proteins, expressed in a tissue-specific manner, that associate with Na,K-ATPase as subsidiary subunits and modulate kinetic properties. This study describes an additional property of FXYD proteins as stabilizers of Na,K-ATPase. FXYD1 (phospholemman), FXYD2 (γ subunit), and FXYD4 (CHIF) have been expressed in Escherichia coli and purified. These FXYD proteins associate spontaneously in vitro with detergent-soluble purified recombinant human Na,K-ATPase (α1β1) to form α1β1FXYD complexes. Compared with the control (α1β1), all three FXYD proteins strongly protect Na,K-ATPase activity against inactivation by heating or excess detergent (C(12)E(8)), with effectiveness FXYD1 > FXYD2 ≥ FXYD4. Heating also inactivates E(1) ↔ E(2) conformational changes and cation occlusion, and FXYD1 protects strongly. Incubation of α1β1 or α1β1FXYD complexes with guanidinium chloride (up to 6 m) causes protein unfolding, detected by changes in protein fluorescence, but FXYD proteins do not protect. Thus, general protein denaturation is not the cause of thermally mediated or detergent-mediated inactivation. By contrast, the experiments show that displacement of specifically bound phosphatidylserine is the primary cause of thermally mediated or detergent-mediated inactivation, and FXYD proteins stabilize phosphatidylserine-Na,K-ATPase interactions. Phosphatidylserine probably binds near trans-membrane segments M9 of the α subunit and the FXYD protein, which are in proximity. FXYD1, FXYD2, and FXYD4 co-expressed in HeLa cells with rat α1 protect strongly against thermal inactivation. Stabilization of Na,K-ATPase by three FXYD proteins in a mammalian cell membrane, as well the purified recombinant Na,K-ATPase, suggests that stabilization is a general property of FXYD proteins, consistent with a significant biological function.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • HeLa Cells
  • Hot Temperature
  • Humans
  • Membrane Proteins / chemistry*
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism
  • Multiprotein Complexes / chemistry*
  • Multiprotein Complexes / genetics
  • Multiprotein Complexes / metabolism
  • Phosphatidylserines / chemistry*
  • Phosphatidylserines / genetics
  • Phosphatidylserines / metabolism
  • Phosphoproteins / chemistry*
  • Phosphoproteins / genetics
  • Phosphoproteins / metabolism
  • Protein Folding*
  • Rats
  • Sodium-Potassium-Exchanging ATPase / chemistry*
  • Sodium-Potassium-Exchanging ATPase / genetics
  • Sodium-Potassium-Exchanging ATPase / metabolism

Substances

  • Membrane Proteins
  • Multiprotein Complexes
  • Phosphatidylserines
  • Phosphoproteins
  • Sodium-Potassium-Exchanging ATPase