Communication: Universal Markovian reduction of Brownian particle dynamics

J Chem Phys. 2011 Jan 7;134(1):011101. doi: 10.1063/1.3532408.

Abstract

Non-Markovian processes can often be turned Markovian by enlarging the set of variables. Here we show, by an explicit construction, how this can be done for the dynamics of a Brownian particle obeying the generalized Langevin equation. Given an arbitrary bath spectral density J(0), we introduce an orthogonal transformation of the bath variables into effective modes, leading stepwise to a semi-infinite chain with nearest-neighbor interactions. The transformation is uniquely determined by J(0) and defines a sequence {J(n)}(n∈N) of residual spectral densities describing the interaction of the terminal chain mode, at each step, with the remaining bath. We derive a simple one-term recurrence relation for this sequence and show that its limit is the quasi-Ohmic expression provided by the Rubin model of dissipation. Numerical calculations show that, irrespective of the details of J(0), convergence is fast enough to be useful in practice for an effective Ohmic reduction of the dissipative dynamics.

MeSH terms

  • Markov Chains
  • Motion*
  • Particle Size