Effect of cobalt precursors on the dispersion, reduction, and CO oxidation of CoO(x)/γ-Al2O3 catalysts calcined in N2

J Colloid Interface Sci. 2011 Mar 15;355(2):464-71. doi: 10.1016/j.jcis.2010.11.076. Epub 2010 Nov 30.

Abstract

The present work tentatively investigated the effect of cobalt precursors (cobalt acetate and cobalt nitrate) on the physicochemical properties of CoO(x)/γ-Al(2)O(3) catalysts calcined in N(2). XRD, Raman, XPS, FTIR, and UV-vis DRS results suggested that CoO/γ-Al(2)O(3) was obtained from cobalt acetate precursors and CoO was dispersed on γ-Al(2)O(3) below its dispersion capacity of 1.50 mmol/(100 m(2) γ-Al(2)O(3)), whereas Co(3)O(4)/γ-Al(2)O(3) was obtained from cobalt nitrate precursors and Co(3)O(4) preferred to agglomerate above the dispersion capacity of 0.15 mmol/(100m(2) γ-Al(2)O(3)). Compared with Co(3)O(4)/γ-Al(2)O(3), CoO/γ-Al(2)O(3) catalysts were difficult to be reduced and easy to desorb oxygen species at low temperatures and presented high activities for CO oxidation as proved by H(2)-TPR, O(2)-TPD, and CO oxidation model reaction results. A surface incorporation model was proposed to explain the dispersion and reduction properties of CoO/γ-Al(2)O(3) catalysts.