Melting in two-dimensional Yukawa systems: a Brownian dynamics simulation

J Chem Phys. 2010 Dec 21;133(23):234508. doi: 10.1063/1.3506875.

Abstract

We studied the melting behavior of two-dimensional colloidal crystals with a Yukawa pair potential by Brownian dynamics simulations. The melting follows the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) scenario with two continuous phase transitions and a middle hexatic phase. The two phase-transition points were accurately identified from the divergence of the translational and orientational susceptibilities. Configurational temperatures were employed to monitor the equilibrium of the overdamped system and the strongest temperature fluctuation was observed in the hexatic phase. The inherent structure obtained by rapid quenching exhibits three different behaviors in the solid, hexatic, and liquid phases. The measured core energy of the free dislocations, E(c) = 7.81 ± 0.91 k(B)T, is larger than the critical value of 2.84 k(B)T, which consistently supports the KTHNY melting scenario.