Macromolecular dynamics of conjugated polymer in donor-acceptor blends with charge transfer complex

Phys Chem Chem Phys. 2011 Mar 7;13(9):3775-81. doi: 10.1039/c0cp01710h. Epub 2010 Dec 24.

Abstract

Donor-acceptor blends based on conjugated polymers are the heart of state-of-the-art polymer solar cells, and the control of the blend morphology is crucial for their efficiency. As the film morphology can inherit the polymer conformational state from solution, the approaches for probing and controlling the polymer conformational state in the blends are of high importance. In this study, we show that the macromolecular dynamics in solutions of the archetypical conjugated polymer, MEH-PPV, is essentially changed upon addition of an acceptor 2,4,7-trinitrofluorenone (TNF) by using dynamic light scattering (DLS). We have observed four new types of the macromolecular dynamics absent in the parent polymer determined by the polymer and acceptor content. The MEH-PPV : TNF ground-state charge-transfer complex (CTC) is suggested to result in these dynamics. In the dilute polymer solution, the CTC formation leads to slower dynamics as compared with the pristine polymer. This is evidence of aggregates formed by intercoil links that are the CTCs involving two conjugated segments of different coils with acceptor molecules being sandwiched between them. At low acceptor content, the aggregates are not stable but at high acceptor content, they are. In the semidilute solution at low acceptor content, the dynamics becomes faster as compared with the pristine polymer that is explained by confinement of the coupled motions of entangled polymer chains. At high acceptor content, the dynamics is far much slower with a characteristic long-range correlation at the scale 3-5 μm that is explained by aggregation of polymer chains in clusters. One can expect that the DLS technique could become a useful tool to study the nano- and microstructure of donor-acceptor conjugated polymer blends to achieve controllable morphology in the corresponding blend films.