Shape and size control of InAs/InP (113)B quantum dots by Sb deposition during the capping procedure

Nanotechnology. 2011 Feb 4;22(5):055703. doi: 10.1088/0957-4484/22/5/055703. Epub 2010 Dec 22.

Abstract

The role of Sb atoms present on the growth front during capping of InAs/InP (113)B quantum dots (QDs) is investigated by cross-sectional scanning tunnelling microscopy, atomic force microscopy, and photoluminescence spectroscopy. Direct capping of InAs QDs by InP results in partial disassembly of InAs QDs due to the As/P exchange occurring at the surface. However, when Sb atoms are supplied to the growth surface before InP capping layer overgrowth, the QDs preserve their uncapped shape, indicating that QD decomposition is suppressed. When GaAs(0.51)Sb(0.49) layers are deposited on the QDs, conformal growth is observed, despite the strain inhomogeneity existing at the growth front. This indicates that kinetics rather than the strain plays the major role during QD capping with Sb compounds. Thus Sb opens up a new way to control the shape of InAs QDs.

Publication types

  • Research Support, Non-U.S. Gov't