A surfactant-free recipe for shape-controlled synthesis of CdSe nanocrystals

Nanotechnology. 2011 Jan 28;22(4):045604. doi: 10.1088/0957-4484/22/4/045604. Epub 2010 Dec 20.

Abstract

We described surfactant-free recipes for the synthesis of CdSe nanocrystals (NCs) with well-controlled morphologies at a relatively low temperature. Dot-, rod-, tetrapod-and sphere-shaped CdSe NCs were prepared with trioctylphosphine oxide (TOPO) as a non-equilibrium solvent and trioctylphosphine selenide (TOPSe) and cadmium carboxylates as Se and Cd precursors, respectively. It was found that the morphology and stacking pattern of the CdSe NCs were related to the preparation conditions such as the concentration of the injected TOPSe(monomer concentration), reaction temperature and chain length of the cadmium carboxylate precursors. At a reaction temperature of 240 °C, CdSe NCs with a tetrapod selectivity of up to 85% were obtained in the presence of cadmium myristate under high concentrated TOPSe injection, and the in situ-formed myristic acid supplied the best acidic ligand with optimal amount to stabilize the anisotropic growth of the tetrapods. The intentional addition of more myristic acid in the reaction system would block the growth pathway of the tetrapods. Using cadmium laurate, cadmium palmitate and cadmium stearate as the cadmium precursors would reduce the formation of the tetrapods, showing the very low selectivity of the tetrapods.

Publication types

  • Research Support, Non-U.S. Gov't