Recovery of reflection spectra in a multispectral imaging system with light emitting diodes

Opt Express. 2010 Oct 25;18(22):23394-405. doi: 10.1364/OE.18.023394.

Abstract

Performance of recently proposed multispectral imaging system for fast acquisition of two dimensional distribution of reflectance spectrum is experimentally studied. The system operation is based on a subspace vector model in which any reflectance spectrum is described in the compressed form as a linear combination of few spectral functions. A key element of the proposed system is a light source which includes a set of light-emitting diodes with different central wavelengths. The light source provides illumination of the object by fast-switchable sequences of spectral bands whose energy distributions are proportional to mutually orthogonal spectral functions (calculated in-advance). Object illumination is synchronized with a monochrome digital camera. The system allows us fast acquisition of reflectance spectra in a compressed form with high spatial resolution. A model of the system calibration by using standard white matte sample is proposed. Reconstruction of the reflectance spectrum from the compressed data collected after illumination of selected color samples from the Munsell book by 7 mutually orthogonal spectral functions is demonstrated. Parameters of the system, which affect the accuracy of the spectrum reconstruction, are analyzed and discussed.

Publication types

  • Research Support, Non-U.S. Gov't