Hydrodechlorination of chlorobenzene over polymer-stabilized palladium-platinum bimetallic colloidal nanocatalysts

J Nanosci Nanotechnol. 2010 Nov;10(11):7715-20. doi: 10.1166/jnn.2010.2797.

Abstract

Poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized Pd, Pt, Pd-Pt nanocatalysts were prepared and characterized by transmission electron microscopy (TEM). Hydrogenation of chlorobenzene was carried out over these colloidal nanocatalysts under ambient conditions. The catalytic properties for the hydrogenation of chlorobenzene depended on the composition of the bimetallic nanocatalysts. The conversion of chlorobenzene over PVP-Pd (83.64%) was higher than that of PVP-Pt (66.67%), which indicated that the activity of Pd was higher than that of Pt. In 10 hrs. the conversions of all the bimetallic nanocatalysts were higher than that of PVP-Pt (66.67%) monometallic nanocatalysts, and the maximum conversion of chlorobenzene (95.34%) was achieved using PVP-Pd/Pt = 1/1 catalytic system, which was much higher than that of the physical mixture of monometallic nanocatalysts (PVP-Pd and PVP-Pt) at the same Pd/Pt ratio as the PVP-Pd/Pt bimetallic nanocatalysts used. The selectivity to benzene and cyclohexane of the bimetallic nanocatalysts (with < or = 40 mol% Pt) was similar to that of PVP-Pd monometallic nanocatalysts, and nearly approximately 100% selectivity to benzene could be obtained, the selectivity to cyclohexane increased slowly with increasing of platinum content in bimetallic nanocatalysts.