Utilizing endoscopic technology to reveal real-time proteomic alterations in response to chemoprevention

Proteomics Clin Appl. 2007 Dec;1(12):1660-6. doi: 10.1002/prca.200700545.

Abstract

Cancer chemoprevention approaches use either pharmacological or dietary agents to impede, arrest or reverse the carcinogenic process. Although several agents have shown effectiveness against colon cancer, present intervention strategies provide only partial reduction. In this study, we utilized high-resolution endoscopy to obtain colon tumor biopsy specimens from Apc mutant mice before and after 2-wk sulindac intervention. To acquire information beyond genomics, proteome analysis using the ProteomeLab PF2D platform was implemented to generate 2-D protein expression maps from biopsies. Chromatograms produced common signature profiles between sulindac and nonsulindac treated samples, and contrasting profiles termed "fingerprints". We selected a double peak that appeared in tumor biopsies from sulindac-treated mice. Further analyses using MS sequencing identified this protein as histone H2B. The location of H2B in the 1(st) dimension strongly suggested PTM, consistent with identification of two oxidized methionines. While further studies on sulindac proteomic fingerprints are underway, this study demonstrates the feasibility and advantages of "real-time" proteomic analysis for obtaining information on biomarker discovery and drug activity that would not be revealed by a genetic assay. This approach should be broadly applicable for assessing lesion responsiveness in a wide range of translational and human clinical studies.