A Peltier cells differential calorimeter with kinetic correction for the measurement of cp(H,T) and Δs(H,T) of magnetocaloric materials

Rev Sci Instrum. 2010 Nov;81(11):113904. doi: 10.1063/1.3499253.

Abstract

In this paper we describe and test a setup for the characterization of the magnetocaloric effect around room temperature. The setup is a differential calorimeter able to measure both the specific heat c(p)(H,T) under constant magnetic field H and the isothermal entropy change induced by changing H, Δs(H,T), in the room temperature range. The setup uses miniaturized Peltier cells to measure the heat flux, with resolution of about 1 μW, and power Peltier cells to regulate the temperature in the range from 243 K (-30 °C) to 343 K (+70 °C). The kinetic effects due to the heat capacity of the measuring cells are taken into account by a simple model of the heat flux diffusion in the calorimetric cell. As measurement examples, we show the characterization of the magnetocaloric effect in magnetic materials with a second order transition [without latent heat and without hysteresis, as in the La(1)(Fe(1-x-y)Co(y)Si(x))(13) alloy with x=0.077 and y=0.079] and with a first order transitions (with latent heat and hysteresis as in Ni(50)Mn(36)Co(1)Sn(13)). As a result we compare the entropy change Δs(H,T) derived from (i) the integration of the specific heat c(p)(H,T) and (ii) the direct isothermal measurements, obtaining an excellent agreement.