Carbon nanotubes/polydimethylsiloxanes systems for thermal management of miniaturized electronic components

J Nanosci Nanotechnol. 2010 Dec;10(12):8336-40. doi: 10.1166/jnn.2010.2663.

Abstract

The thermal performances of nanocomposite layers formed by Single-walled Carbon Nanotubes (SWCNT) dispersed in 2 different kind of polydimethyl-siloxane (PDMSO) matrices has been investigated by measuring the thermal resistance under conditions similar to the ones used for thermal management in microelectronics. A series of nanocomposite samples with thickness in the range 25 microm(-1) cm have been tested. The nanocomposites were prepared varying the amounts of nanotubes embedded in the matrix (from 0.1 to 5%w). In some cases also microsized graphites were mixed to the nanotube's fillers. For 25 micron thick layers, the thermal resistance of the neat silicone specimen can be reduced of 54% with the addition of 2%w carbon nanotubes. The variation of thermal conductivity as a function of the SWCNT's loading is reported and discussed. Furthermore the dispersion's effects of the nanotubes in the layers and the effects on the realization of a net-like system have been investigated.

Publication types

  • Research Support, Non-U.S. Gov't