EEG dynamics reflects the partial and holistic effects in mental imagery generation

J Zhejiang Univ Sci B. 2010 Dec;11(12):944-51. doi: 10.1631/jzus.B1000005.

Abstract

Mental imagery generation is essential in the retrieval and storage of knowledge. Previous studies have indicated that the holistic properties of mental imagery generation can be evaluated more easily than the partial properties. However, the relationship between partial and holistic mental imagery generations has not been clearly demonstrated. To address this issue, we designed a task to investigate the changes in the spectrum of the electroencephalogram (EEG) during partial or holistic imagery generation. EEG signals were obtained from 18 healthy subjects, and a statistical measure of spectral dynamics between two EEG signals in per frequency band was performed. Additionally, a bicoherence spectrum analysis was used to detect the phase coupling within these two imagery conditions. Our results indicated that EEG of the partial imagery appeared earlier and stronger than that of the holistic imagery in the theta (5-8 Hz) range in a time window around 220 to 300 ms after cue onset, and a slight decrease in the alpha (8-12 Hz) band was observed at around 270 ms. The scalp topography of these changes in the theta and alpha bands distributed overall significantly in the frontal and central-temporal areas. The significant phase coupling within two conditions was remarkable at high frequency. From these results, we infer that there are complex relations between partial and holistic imageries. The generation of partial mental imagery is not a subprocess of holistic imagery, but it is relevant to holistic imagery and requires correct modification from the holistic information.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Electroencephalography*
  • Female
  • Humans
  • Imagination*
  • Male
  • Young Adult