The heterogeneity of segmental dynamics of filled EPDM by (1)H transverse relaxation NMR

J Magn Reson. 2011 Jan;208(1):156-62. doi: 10.1016/j.jmr.2010.10.019. Epub 2010 Nov 5.

Abstract

Residual second moment of dipolar interactions M(2) and correlation time segmental dynamics distributions were measured by Hahn-echo decays in combination with inverse Laplace transform for a series of unfilled and filled EPDM samples as functions of carbon-black N683 filler content. The fillers-polymer chain interactions which dramatically restrict the mobility of bound rubber modify the dynamics of mobile chains. These changes depend on the filler content and can be evaluated from distributions of M(2). A dipolar filter was applied to eliminate the contribution of bound rubber. In the first approach the Hahn-echo decays were fitted with a theoretical relationship to obtain the average values of the (1)H residual second moment <M(2)> and correlation time <τ(c)>. For the mobile EPDM segments the power-law distribution of correlation function was compared to the exponential correlation function and found inadequate in the long-time regime. In the second approach a log-Gauss distribution for the correlation time was assumed. Furthermore, using an averaged value of the correlation time, the distributions of the residual second moment were determined using an inverse Laplace transform for the entire series of measured samples. The unfilled EPDM sample shows a bimodal distribution of residual second moments, which can be associated to the mobile polymer sub-chains (M(2) ≅ 6.1 rad (2) s(-2)) and the second one associated to the dangling chains M(2) ≅ 5.4 rad(2) s(-2)). By restraining the mobility of bound rubber, the carbon-black fillers induce diversity in the segmental dynamics like the apparition of a distinct mobile component and changes in the distribution of mobile and free-end polymer segments.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Computer Simulation
  • Magnetic Resonance Spectroscopy / methods*
  • Models, Chemical*
  • Protons
  • Soot / analysis*
  • Soot / chemistry*

Substances

  • Protons
  • Soot