Effects of non-Lambertian surfaces on integrating sphere measurements

Appl Opt. 1996 Jul 1;35(19):3597-606. doi: 10.1364/AO.35.003597.

Abstract

The effects of non-Lambertian scattering of the interior wall of an integrating sphere are examined through a sphere simulation model. The model employs Monte Carlo techniques. A sphere used for measurement of directional-hemispherical reflectance is modeled. The simulation allows sphere wall scattering to vary from perfectly Lambertian to perfectly specular in steps. The results demonstrate that significant measurement error can result as the scattering deviates from the Lambertian ideal. The error is found to be a strong function of the wall reflectance value as well: it is minimized for reflectances approaching 1.0 and increases as the reflectance value decreases to the minimum value examined of 0.5. The magnitudes of the errors associated with non-Lambertian scattering are also shown to be relatively independent of the specific field of view of the detector used in the measurement.