Experimental investigation of new concentration measurements using nonlinear dynamics through laser-induced thermal lens oscillation

Appl Opt. 1996 Jun 20;35(18):3223-9. doi: 10.1364/AO.35.003223.

Abstract

The laser-induced thermal lens oscillation that is generated in an organic solution by Ar-ion laser irradiation was studied as a nonlinear dynamic system. The different dynamic states depend on three control parameters: laser beam power (P), depth (d) from a surface to a laser beam position, and solvent concentration. The transitions of dynamic states including several complicated states, for example, periodic, double periodic, were investigated by varying the parameters (P, d) for 27%, 30%, and 33% of tri-n-butyl phosphate solution diluted with n-dodecane. It was found that these transitions were strongly dependent on the concentration of the TBP solution. Based on this result, we also propose an application to solvent concentration measurement with a difference of 3%.