Tumor necrosis factor-alpha regulates the Hypocretin system via mRNA degradation and ubiquitination

Biochim Biophys Acta. 2011 Apr;1812(4):565-71. doi: 10.1016/j.bbadis.2010.11.003. Epub 2010 Nov 18.

Abstract

Recent studies recognize that Hypocretin system (also known as Orexin) plays a critical role in sleep/wake disorders and feeding behaviors. However, little is known about the regulation of the Hypocretin system. It is also known that tumor necrosis factor alpha (TNF-α) is involved in the regulation of sleep/wake cycle. Here, we test our hypothesis that the Hypocretin system is regulated by TNF-α. Prepro-Hypocretin and Hypocretin receptor 2 (HcrtR2) can be detected at a very low level in rat B35 neuroblastoma cells. In response to TNF-α, Prepro-Hypocretin mRNA and protein levels are down-regulated, and also HcrtR2 protein level is down-regulated in B35 cells. To investigate the mechanism, exogenous rat Prepro-Hypocretin and rat HcrtR2 were overexpressed in B35 cells. In response to TNF-α, protein and mRNA of Prepro-Hypocretin are significantly decreased (by 93% and 94%, respectively), and the half-life of Prepro-Hypocretin mRNA is decreased in a time- and dose-dependent manner. The level of HcrtR2 mRNA level is not affected by TNF-α treatment; however, HcrtR2 protein level is significantly decreased (by 86%) through ubiquitination in B35 cells treated with TNF-α. Downregulation of cellular inhibitor of apoptosis protein-1 and -2 (cIAP-1 and -2) abrogates the HcrtR2 ubiquitination induced by TNF-α. The control green fluorescent protein (GFP) expression is not affected by TNF-α treatment. These studies demonstrate that TNF-α can impair the function of the Hypocretin system by reducing the levels of both Prepro-Hypocretin and HcrtR2.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Down-Regulation
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Neuropeptides / genetics
  • Neuropeptides / metabolism*
  • Orexin Receptors
  • Orexins
  • RNA Stability*
  • RNA, Messenger / genetics
  • Rats
  • Receptors, G-Protein-Coupled / genetics
  • Receptors, G-Protein-Coupled / metabolism*
  • Receptors, Neuropeptide / genetics
  • Receptors, Neuropeptide / metabolism*
  • Sleep Wake Disorders / etiology
  • Tumor Necrosis Factor-alpha / metabolism*
  • Ubiquitination*

Substances

  • Hcrtr2 protein, rat
  • Intracellular Signaling Peptides and Proteins
  • Neuropeptides
  • Orexin Receptors
  • Orexins
  • RNA, Messenger
  • Receptors, G-Protein-Coupled
  • Receptors, Neuropeptide
  • Tumor Necrosis Factor-alpha