Establishment of a new human pleomorphic malignant fibrous histiocytoma cell line, FU-MFH-2: molecular cytogenetic characterization by multicolor fluorescence in situ hybridization and comparative genomic hybridization

J Exp Clin Cancer Res. 2010 Nov 24;29(1):153. doi: 10.1186/1756-9966-29-153.

Abstract

Background: Pleomorphic malignant fibrous histiocytoma (MFH) is one of the most frequent malignant soft tissue tumors in adults. Despite the considerable amount of research on MFH cell lines, their characterization at a molecular cytogenetic level has not been extensively analyzed.

Methods and results: We established a new permanent human cell line, FU-MFH-2, from a metastatic pleomorphic MFH of a 72-year-old Japanese man, and applied multicolor fluorescence in situ hybridization (M-FISH), Urovysion™ FISH, and comparative genomic hybridization (CGH) for the characterization of chromosomal aberrations. FU-MFH-2 cells were spindle or polygonal in shape with oval nuclei, and were successfully maintained in vitro for over 80 passages. The histological features of heterotransplanted tumors in severe combined immunodeficiency mice were essentially the same as those of the original tumor. Cytogenetic and M-FISH analyses displayed a hypotriploid karyotype with numerous structural aberrations. Urovysion™ FISH revealed a homozygous deletion of the p16INK4A locus on chromosome band 9p21. CGH analysis showed a high-level amplification of 9q31-q34, gains of 1p12-p34.3, 2p21, 2q11.2-q21, 3p, 4p, 6q22-qter, 8p11.2, 8q11.2-q21.1, 9q21-qter, 11q13, 12q24, 15q21-qter, 16p13, 17, 20, and X, and losses of 1q43-qter, 4q32-qter, 5q14-q23, 7q32-qter, 8p21-pter, 8q23, 9p21-pter, 10p11.2-p13, and 10q11.2-q22.

Conclusion: The FU-MFH-2 cell line will be a particularly useful model for studying molecular pathogenesis of human pleomorphic MFH.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Animals
  • Cell Line, Tumor*
  • Comparative Genomic Hybridization
  • Histiocytoma, Malignant Fibrous / genetics*
  • Histiocytoma, Malignant Fibrous / pathology*
  • Humans
  • In Situ Hybridization, Fluorescence
  • Male
  • Mice
  • Mice, SCID
  • Xenograft Model Antitumor Assays