Formation of undulated lamellar structure from ABC block terpolymer blends with different chain lengths

J Chem Phys. 2010 Nov 21;133(19):194901. doi: 10.1063/1.3501366.

Abstract

The effect of molecular weight distribution of ABC linear terpolymers on the formation of periodic structures was investigated. Three poly(isoprene-b-styrene-b-2-vinylpridine) triblockterpolymers with molecular weights of 26k, 96k, and 150k were blended variously. Three-phase, four-layer lamellar structures were observed when polydispersity index (PDI) was low, but it has been found that simple lamellar structure with flat surface transforms into an undulated lamellar one, where two interfaces, i.e., I/S and S/P, are both undulated, and they are synchronizing each other if PDI exceeds the critical value. This new structure could be formed due to the periodic and "weak" localization of three chains along the domain interfaces, which produces periodic surfaces with nonconstant mean curvatures. With further increase of PDI, the blend macroscopically phase-separated into different microphase-separated structures.