Monitoring and modeling endosulfan in Chinese surface soil

Environ Sci Technol. 2010 Dec 15;44(24):9279-84. doi: 10.1021/es102791n. Epub 2010 Nov 17.

Abstract

Endosulfan is a currently used organochlorine pesticide in China, with annual usage of 2300 t between 1994 and 2004. Concentrations of endosulfan (including α- and β-isomers and their metabolite endosulfan sulfate) were reported for surface soil collected in 2005 at 141 sites (6 background, 95 rural, and 40 urban) across China. The concentrations of total endosulfan (sum of α-endosulfan, β-endosulfan, and endosulfan sulfate) at all sites ranged from BDL (below detection limit) to 19000 pg/g dry weight (dw), with geometric mean (GM) 120 pg/g dw. Rural soils had the highest total endosulfan concentrations, with GM 160 pg/g dw, followed by urban soils (GM = 83 pg/g dw) and background soils (GM = 38 pg/g dw). The observed soil concentrations of α-endosulfan (GM = 6.5 pg/g dw) were much lower than those of β-endosulfan (GM = 49 pg/g dw) and endosulfan sulfate (GM = 47 pg/g dw). The fractional abundance of α-endosulfan F(α-endo) [α-endosulfan/(α-endosulfan + β-endosulfan)] for all soils ranged from 0.00040 to 0.91, with GM 0.10, much lower than those in technical products (ranged from 0.67 to 0.7), which most likely reflects that α-endosulfan is more volatile and degrades faster than β-endosulfan in soil. Consequently, half-life of β-endosulfan in soil is expected longer than α-endosulfan. Significant correlation between endosulfan sulfate and its parent isomers suggested that the presence of endosulfan sulfate originated from its parent isomers. Based on multiple linear regression model, inventories of endosulfan sulfate in Chinese agricultural soil in 2004 with a 1/4° longitude × 1/6° latitude resolution are established. Comparison between field measurements and modeling results showed significant correlations between the modeled and measured endosulfan concentrations, and 89%, 83%, and 70% of monitoring data fell between the lowest and the highest modeled concentrations for α- and β-endosulfan and endosulfan sulfate, respectively. The good agreement lends credibility to modeled soil concentrations of endosulfan. To our knowledge, this is the first soil concentration inventory for endosulfan sulfate, which paves the way for further study on its environmental behavior.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • China
  • Endosulfan / analysis*
  • Environmental Monitoring / methods*
  • Half-Life
  • Hydrocarbons, Chlorinated / analysis
  • Models, Chemical*
  • Pesticides / analysis*
  • Soil / chemistry
  • Soil Pollutants / analysis*

Substances

  • Hydrocarbons, Chlorinated
  • Pesticides
  • Soil
  • Soil Pollutants
  • Endosulfan