Nutraceutical antioxidants as novel neuroprotective agents

Molecules. 2010 Nov 3;15(11):7792-814. doi: 10.3390/molecules15117792.

Abstract

A variety of antioxidant compounds derived from natural products (nutraceuticals) have demonstrated neuroprotective activity in either in vitro or in vivo models of neuronal cell death or neurodegeneration, respectively. These natural antioxidants fall into several distinct groups based on their chemical structures: (1) flavonoid polyphenols like epigallocatechin 3-gallate (EGCG) from green tea and quercetin from apples; (2) non-flavonoid polyphenols such as curcumin from tumeric and resveratrol from grapes; (3) phenolic acids or phenolic diterpenes such as rosmarinic acid or carnosic acid, respectively, both from rosemary; and (4) organosulfur compounds including the isothiocyanate, L-sulforaphane, from broccoli and the thiosulfonate allicin, from garlic. All of these compounds are generally considered to be antioxidants. They may be classified this way either because they directly scavenge free radicals or they indirectly increase endogenous cellular antioxidant defenses, for example, via activation of the nuclear factor erythroid-derived 2-related factor 2 (Nrf2) transcription factor pathway. Alternative mechanisms of action have also been suggested for the neuroprotective effects of these compounds such as modulation of signal transduction cascades or effects on gene expression. Here, we review the literature pertaining to these various classes of nutraceutical antioxidants and discuss their potential therapeutic value in neurodegenerative diseases.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Antioxidants / chemistry
  • Antioxidants / pharmacology
  • Antioxidants / therapeutic use*
  • Apoptosis / drug effects
  • Dietary Supplements*
  • Neurodegenerative Diseases / drug therapy*
  • Neurons / drug effects
  • Neuroprotective Agents / chemistry
  • Neuroprotective Agents / pharmacology
  • Neuroprotective Agents / therapeutic use*
  • Oxidative Stress / drug effects
  • Reactive Oxygen Species / metabolism

Substances

  • Antioxidants
  • Neuroprotective Agents
  • Reactive Oxygen Species