Target-selective one-way membrane fusion system based on a pH-responsive coiled coil assembly at the interface of liposomal vesicles

Langmuir. 2011 Feb 15;27(4):1403-8. doi: 10.1021/la103908u. Epub 2010 Nov 8.

Abstract

The coiled coil trimer structure is a common motif observed in membrane fusion processes of specific fusion proteins such as the hemagglutinin glycoprotein. The HA2 subunit in the hemagglutinin changes its conformation or geometry to be favorable to membrane fusion in response to endosomal weakly acidic pH. This pH responsiveness is indispensable to an artificial polypeptide-triggered delivery system as well as the membrane fusion reaction in biology. In this study, we have constructed an AAB-type coiled coil heteroassembled system that is sensitive to weakly acidic pH. The heterotrimer is formed from two kinds of polypeptides containing an Ala or a Trp residue at a hydrophobic a position, and it was observed that the Glu residue at the other a position induced an acidic pH-dependent conformational change. On the basis of this pH-responsive coiled coil heteroassembled system, a boronic acid coupled working polypeptide for the combination of an intervesicular complex with a sugarlike compound on the surface of the target liposome, and a supporting polypeptide for the construction of a pH-responsive heterotrimer with the working polypeptide were designed and synthesized. The process of membrane fusion was characterized by lipid-mixing, inner-leaflet lipid-mixing, and content-mixing assays. The target selective vesicle fusion is clearly observed at a weakly acidic pH, where the working polypeptides form a heterotrimeric coiled coil with the supporting polypeptides in a 1:2 binding stoichiometry and the surfaces between pilot and target vesicles come into close proximity to each other.

MeSH terms

  • Circular Dichroism
  • Hemagglutinins / chemistry
  • Hydrogen-Ion Concentration
  • Liposomes / chemistry*
  • Ultracentrifugation

Substances

  • Hemagglutinins
  • Liposomes