Optimization of automated radiosynthesis of [18F]AV-45: a new PET imaging agent for Alzheimer's disease

Nucl Med Biol. 2010 Nov;37(8):917-25. doi: 10.1016/j.nucmedbio.2010.05.001. Epub 2010 Jun 29.

Abstract

Introduction: Accumulation of β-amyloid (Aβ) aggregates in the brain is linked to the pathogenesis of Alzheimer's disease (AD). Imaging probes targeting these Aβ aggregates in the brain may provide a useful tool to facilitate the diagnosis of AD. Recently, [(18)F]AV-45 ([(18)F]5) demonstrated high binding to the Aβ aggregates in AD patients. To improve the availability of this agent for widespread clinical application, a rapid, fully automated, high-yield, cGMP-compliant radiosynthesis was necessary for production of this probe. We report herein an optimal [(18)F]fluorination, de-protection condition and fully automated radiosynthesis of [(18)F]AV-45 ([(18)F]5) on a radiosynthesis module (BNU F-A2).

Methods: The preparation of [(18)F]AV-45 ([(18)F]5) was evaluated under different conditions, specifically by employing different precursors (-OTs and -Br as the leaving group), reagents (K222/K(2)CO(3) vs. tributylammonium bicarbonate) and deprotection in different acids. With optimized conditions from these experiments, the automated synthesis of [(18)F]AV-45 ([(18)F]5) was accomplished by using a computer-programmed, standard operating procedure, and was purified on an on-line solid-phase cartridge (Oasis HLB).

Results: The optimized reaction conditions were successfully implemented to an automated nucleophilic fluorination module. The radiochemical purity of [(18)F]AV-45 ([(18)F]5) was >95%, and the automated synthesis yield was 33.6 ± 5.2% (no decay corrected, n=4), 50.1 ± 7.9% (decay corrected) in 50 min at a quantity level of 10-100 mCi (370-3700 MBq). Autoradiography studies of [(18)F]AV-45 ([(18)F]5) using postmortem AD brain and Tg mouse brain sections in the presence of different concentration of "cold" AV-136 showed a relatively low inhibition of in vitro binding of [(18)F]AV-45 ([(18)F]5) to the Aβ plaques (IC50=1-4 μM, a concentration several order of magnitude higher than the expected pseudo carrier concentration in the brain).

Conclusions: Solid-phase extraction purification and improved labeling conditions were successfully implemented into an automated synthesis module, which is more convenient, highly efficient and simpler in operation than using a semipreparative high-performance liquid chromatography method. This new, automated procedure for preparation of [(18)F]AV-45 ([(18)F]5) is suitable for routine clinical application.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease / diagnostic imaging*
  • Aniline Compounds / chemical synthesis*
  • Aniline Compounds / chemistry
  • Animals
  • Automation
  • Autoradiography
  • Brain / diagnostic imaging
  • Ethylene Glycols / chemical synthesis*
  • Ethylene Glycols / chemistry
  • Halogenation
  • Humans
  • Isotope Labeling
  • Mice
  • Mice, Transgenic
  • Plaque, Amyloid / diagnostic imaging
  • Positron-Emission Tomography / methods*
  • Pyridines / chemical synthesis*
  • Pyridines / chemistry
  • Radiochemistry / methods*

Substances

  • Aniline Compounds
  • Ethylene Glycols
  • Pyridines
  • florbetapir