Nonadiabatic quantum reactive scattering of the OH(A 2Σ+) + D2

J Chem Phys. 2010 Nov 7;133(17):174316. doi: 10.1063/1.3502468.

Abstract

The seams of conical intersection exist between the ground (1 (2)A(')) and the first-excited (2 (2)A(')) electronic potential energy surfaces (PESs) of OH(A (2)Σ(+),X (2)Π) + H(2) system. This intersection induces the nonadiabatic quenching of OH(A (2)Σ(+)) by D(2). We present nonadiabatic quantum dynamics study for OH(A (2)Σ(+)) + D(2) on new five-dimensional coplanar PESs. The ab initio calculations of PESs are based on multireference configuration interaction (MRCI)/aug-cc-pVQZ level. A back-propagation neural network is utilized to fit the PESs and nonadiabatic coupling. High degrees of rotational excitation of quenched OH(X (2)Π) products are found in nonreactive quenching channel, and the quenched D(2) products are vibrationally excited up to quantum number v(2) (')=8. The theoretical results of nonadiabatic time-dependent wave-packet calculation are in good agreement with the existing experimental data.