Temperature measurements from first-negative N(2)(+) spectra produced by laser-induced multiphoton ionization and optical breakdown of nitrogen

Appl Opt. 1995 Jun 20;34(18):3331-5. doi: 10.1364/AO.34.003331.

Abstract

A 248-nm excimer laser was used to produce ionized nitrogen by the process of multiphoton excitation in gaseous nitrogen at room temperature. First-negative N(2)(+) emission spectra were analyzed to yield rotational temperatures of typically 600 to 1200 K. Rotational Raman scattering of H(2) in gaseous mixtures of N(2) and H(2) was used to determine if laser heating of the gas produced the observed increase in temperature, but the room temperature value of 295 K was inferred from the H(2) Raman data. Therefore the use of N(2)(+) spectra produced by multiphoton excitation at 248 nm does not appear to be acceptable for air-temperature diagnostics. N(2)(+) emission spectra were also recorded subsequent to optical breakdown in air induced by Nd:YAG 1064-nm radiation, and temperatures were determined to be greater than 5000 K in the decaying plasma.