Identification and characterization of a novel-type ferric siderophore reductase from a gram-positive extremophile

J Biol Chem. 2011 Jan 21;286(3):2245-60. doi: 10.1074/jbc.M110.192468. Epub 2010 Nov 4.

Abstract

Iron limitation is one major constraint of microbial life, and a plethora of microbes use siderophores for high affinity iron acquisition. Because specific enzymes for reductive iron release in gram-positives are not known, we searched Firmicute genomes and found a novel association pattern of putative ferric siderophore reductases and uptake genes. The reductase from the schizokinen-producing alkaliphile Bacillus halodurans was found to cluster with a ferric citrate-hydroxamate uptake system and to catalyze iron release efficiently from Fe[III]-dicitrate, Fe[III]-schizokinen, Fe[III]-aerobactin, and ferrichrome. The gene was hence named fchR for ferric citrate and hydroxamate reductase. The tightly bound [2Fe-2S] cofactor of FchR was identified by UV-visible, EPR, CD spectroscopy, and mass spectrometry. Iron release kinetics were determined with several substrates by using ferredoxin as electron donor. Catalytic efficiencies were strongly enhanced in the presence of an iron-sulfur scaffold protein scavenging the released ferrous iron. Competitive inhibition of FchR was observed with Ga(III)-charged siderophores with K(i) values in the micromolar range. The principal catalytic mechanism was found to couple increasing K(m) and K(D) values of substrate binding with increasing k(cat) values, resulting in high catalytic efficiencies over a wide redox range. Physiologically, a chromosomal fchR deletion led to strongly impaired growth during iron limitation even in the presence of ferric siderophores. Inductively coupled plasma-MS analysis of ΔfchR revealed intracellular iron accumulation, indicating that the ferric substrates were not efficiently metabolized. We further show that FchR can be efficiently inhibited by redox-inert siderophore mimics in vivo, suggesting that substrate-specific ferric siderophore reductases may present future targets for microbial pathogen control.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacillus / chemistry
  • Bacillus / enzymology*
  • Bacillus / genetics
  • Bacterial Proteins / chemistry
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Catalysis
  • Ferric Compounds / chemistry
  • Ferric Compounds / metabolism*
  • Gene Deletion
  • Oxidoreductases / chemistry
  • Oxidoreductases / genetics
  • Oxidoreductases / metabolism*
  • Siderophores / chemistry
  • Siderophores / genetics
  • Siderophores / metabolism

Substances

  • Bacterial Proteins
  • Ferric Compounds
  • Siderophores
  • Oxidoreductases