Coordination-driven self assembly of a brilliantly fluorescent rhomboid cavitand composed of bodipy-dye subunits

J Am Chem Soc. 2010 Nov 24;132(46):16327-9. doi: 10.1021/ja1064679. Epub 2010 Nov 3.

Abstract

The two sp(3) hybridized fluorine atoms of a Bodipy dye have been synthetically replaced with the linear donor ligand 4-ethynylpyridine (-C≡C-Py) to form a rigid and highly symmetrical 109.5° building block in which the fluorophore subunit is vertically aligned to the plane formed by the -C≡C-Py donors. Upon reaction of the above tecton with a 90° organoplatinum acceptor unit, an intensely fluorescent rhomboid cavitand was manifested in solution. In contrast to the vast majority of coordination-driven self-assembled chromophoric systems, the present one fully conserves the excellent photophysical properties of the parent Bodipy dye. These unique features of the present metallosupramolecular entity constitute a fascinating metal-to-ligand self-assembled prototype for building compact and intensely luminescent materials with host-guest capabilities.