GABA(A) receptor-mediated presynaptic inhibition on glutamatergic transmission

Brain Res Bull. 2011 Jan 15;84(1):22-30. doi: 10.1016/j.brainresbull.2010.10.007. Epub 2010 Oct 29.

Abstract

We investigated the functional roles of presynaptic GABA(A) receptors on excitatory nerve terminals in contributing to spontaneous and action potential-evoked glutamatergic transmission to rat hippocampal CA3 pyramidal neurons. Single CA3 neurons were mechanically isolated with adherent nerve terminals, namely the 'synaptic bouton preparation', and spontaneous glutamatergic excitatory synaptic potentials (sEPSCs) and EPSCs evoked by focal electrical stimuli of a single presynaptic glutamatergic boutons (eEPSCs) were recorded using conventional whole-cell patch recordings. Selective activation of presynaptic GABA(A) receptors on these excitatory nerve terminals by muscimol, markedly facilitated sEPSCs frequency but inhibited eEPSC amplitude. The facilitation of sEPSC frequency was completely occluded by GABA(A) receptor-Cl⁻ channel blockers bicuculline or penicillin (PN). PN itself concentration-dependently inhibited the GABA(A) receptor response induced by bath application of muscimol, but had no effect on the glutamate receptor response. In addition, pretreatment with a blocker of the Na(+), K(+), 2Cl⁻ co-transporter type 1 (NKCC-1), bumetanide, prevented the muscimol-induced inhibition of eEPSCs. The results indicate that activation of presynaptic GABA(A) receptors directly depolarizes glutamatergic excitatory nerve terminals and thereby differentially modulates sEPSCs and eEPSCs.

MeSH terms

  • Animals
  • Bicuculline / pharmacology
  • Bumetanide / pharmacology
  • Excitatory Postsynaptic Potentials / drug effects
  • Excitatory Postsynaptic Potentials / physiology
  • GABA-A Receptor Agonists / pharmacology
  • GABA-A Receptor Antagonists / pharmacology
  • Glutamic Acid / metabolism*
  • Hippocampus / cytology
  • Muscimol / pharmacology
  • Neurons / cytology
  • Neurons / drug effects
  • Neurons / physiology
  • Patch-Clamp Techniques
  • Presynaptic Terminals / drug effects
  • Presynaptic Terminals / physiology*
  • Rats
  • Rats, Wistar
  • Receptors, GABA-A / metabolism
  • Receptors, Glutamate / metabolism
  • Sodium Potassium Chloride Symporter Inhibitors / pharmacology
  • Synaptic Transmission / drug effects
  • Synaptic Transmission / physiology*

Substances

  • GABA-A Receptor Agonists
  • GABA-A Receptor Antagonists
  • Receptors, GABA-A
  • Receptors, Glutamate
  • Sodium Potassium Chloride Symporter Inhibitors
  • Bumetanide
  • Muscimol
  • Glutamic Acid
  • Bicuculline